Vuvuzela

Abhirath Mahipal

csjourney.com
@abhirathmahipal



https://csjourney.com/
https://twitter.com/abhirathmahipal

Why??

- EXxisting approaches don't hide metadata.
- Some do hide metadata but are not scalable.
- Vuvuzela tries to do both.



https://csjourney.com/onion-routers-mix-networks-differences-explained

Goals

Subsidiary

Prevent an adversary from distinguishing between real and possible adjacent
actions in light of various analysis techniques.
Don'’t leak information in the form of probability.

End

Hide content of the messages as well as metadata.
Hence protect users over many rounds of communication.



What can a Powerful Adversary do?

Modify / inject traffic. Read Verizon injecting HTTP traffic with tracking
cookies.

Block traffic from certain participants, delay traffic.

Have unrestricted access to servers.

Create fake traffic from certain users.

Man power to monitor network usage over very long durations.

DDoS servers.

The above implies access to ISP, cloud service providers etc.



https://www.eff.org/deeplinks/2014/11/verizon-x-uidh
https://www.eff.org/deeplinks/2014/11/verizon-x-uidh

Overview

Reduce the number of observable variables (example number of users online,
number of requests from a given client etc). To outsiders, as well as amongst
the servers themselves.

Noise, noise & noise.

Mixnets and onion encryption.

2 Protocols. Conversation and Dialing.

Synchronous time based rounds, ephemeral storage in memory.

Virtual dead drops (just named ID’s to identify which pocket to deposit and
receive messages from).



Conversation Protocol

(o4 [T=14]

They compute the dead drop ID using the shared secret and round number.
Onion wraps and sends it to the server.
Construct fake message if not in a conversation.

Server

Collect requests and decrypt. Add noise as per the parameters set.
Shuffle the request and forward to the next server in the chain.
If it's the last server, match the dead drops and read and write accordingly.



How is info Hidden?

- Users Active
- Every user exchanges information
- Same length via padding etc
- User and Dead Drop Correlation
- Different dead drop for every round
- Mixnet design
- Number of Messages Successfully Exchanged
- Cover traffic to hide the number of single accesses and double accesses



Dialing Protocol

Assumed that the sender knows the receivers public key before hand.

Fixed locations shared by multiple users to receive invitations.

If Alice wants to talk to Bob, she drops an invite at Bob’s dead drop. Bob
downloads many other invites (fake or belonging to Charlie) as well.

Both the users generate a shared secret that can then be used in the
conversation protocol.

Public drop deads and known by everyone. So they proposed a P2P or CDN
to download instead of routing via Vuvuzela servers.



How is info Hidden?

- User Participation
- Invitations onion encrypted and shuffled
- Even if not participating special no-op dead drop

- Which Box did a User Send an Invite to?
- Random noise i.e fake invitations in every dead drop

- Each dead drop shared by multiple users
- How Many Invitations are in a Dead Drop?

- Fake invites and shared by multiple users
- Tweakable to strike balance between privacy and performance



Client

Client sends messages at a fixed interval no matter how fast a user types.
Handles sending messages that could not be sent in the earlier round that the
user missed.

Onion encrypts and send the requests only to the first server, so the client
should know the public keys of all the servers in the chain.

User should leave the client online at all times (or should not leave clues as to
when he comes online).

Constructs fake requests in case not in an active conversation.

Should not switch to a less secure protocol in case of DDoS (simple use case
would be HTTP injection)



Scaling

1M users, 68,000 messages per second on beefy hardware.

Constant number of fake messages helps scale.

Costly in terms of bandwidth. Every client is constantly connected, fake cover
traffic etc

Increasing the number of servers reduces performance and increases latency
because each request has to go through every server. Increases security
though.

Prone to DDoS attacks given the fixed chain of servers.



Other Material

SOSP 2015 Slides

Ember.is Web Client for Vuvuzela before Alpenhorn
Slides Again (Smaller)

Source Tree Without Alpenhorn



https://davidlazar.org/slides/vuvuzela-sosp2015.pdf
https://github.com/jlmart88/vuvuzela-web-client
https://os.inf.tu-dresden.de/Studium/ReadingGroupArchive/slides/2015/20151008-bierbaum-vuvuzela.pdf
https://github.com/vuvuzela/vuvuzela/tree/c2eca3642525f0bd081b3c6c06ac2eb009e46d76

End



